Course:

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and go through both motivation and process involved in moving your research computing to the cloud. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate

Duration: 3:09:12

Speaker: : Amanda Tan

This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate

Duration: 1:40:52

Speaker: : Paul Triebkorn

Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

Difficulty level: Intermediate

Duration:

Speaker: :

Course:

This Jupyter Book is a series of interactive tutorials about quantitative T1 mapping, powered by qMRLab. Most figures are generated with Plot.ly – you can play with them by hovering your mouse over the data, zooming in (click and drag) and out (double click), moving the sliders, and changing the drop-down options. To view the code that was used to generate the figures in this blog post, hover your cursor in the top left corner of the frame that contains the tutorial and click the checkbox “All cells” in the popup that appears.

Jupyter Lab notebooks of these tutorials are also available through MyBinder, and inline code modification inside the Jupyter Book is provided by Thebelab. For both options, you can modify the code, change the figures, and regenerate the html that was used to create the tutorial below. This Jupyter Book also uses a Script of Scripts (SoS) kernel, allowing us to process the data using qMRLab in MATLAB/Octave and plot the figures with Plot.ly using Python, all within the same Jupyter Notebook.

Difficulty level: Intermediate

Duration:

Speaker: :

This lecture focuses on ontologies for clinical neurosciences.

Difficulty level: Intermediate

Duration: 21:54

Speaker: : Martin Hofmann-Apitius

This is the Introductory Module to the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 50:17

Speaker: : Yann LeCun and Alfredo Canziani

This module covers the concepts of gradient descent and the backpropagation algorithm and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:51:03

Speaker: : Yann LeCun

This lecture covers the concept of neural nets--rotation and squashing and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:01:53

Speaker: : Alfredo Canziani

This lecture on modules and architectures is part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:42:26

Speaker: : Yann LeCun and Alfredo Canziani

This lecture covers the concept of neural nets training (tools, classification with neural nets, and PyTorch implementation) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:05:47

Speaker: : Alfredo Canziani

This lecture covers the concept of parameter sharing: recurrent and convolutional nets and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:59:47

Speaker: : Yann LeCun and Alfredo Canziani

This lecture covers the concept of convolutional nets in practice and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 51:40

Speaker: : Yann LeCun

This lecture covers the concept of natural signals properties and the convolutional nets in practice and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:09:12

Speaker: : Alfredo Canziani

This lecture covers the concept of recurrent neural networks: vanilla and gated (LSTM) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:05:36

Speaker: : Alfredo Canziani

This lecture is a foundationational lecture for the concept of energy based models with a particular focus on the joint embedding method and latent variable energy based models 8LV-EBMs) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning, Parameter sharing, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:51:30

Speaker: : Yann LeCun

This lecture covers the concept of inference in latent variable energy based models (LV-EBMs) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning, Parameter sharing, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:01:04

Speaker: : Alfredo Canziani

This panel discussion covers how energy based models are used and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning, Parameter sharing, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 10:42

Speaker: : Yann LeCun and Alfredo Canziani

This lecture is a foundationational lecture for the concept of energy based models with a particular focus on the joint embedding method and latent variable energy based models 8LV-EBMs) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning, Parameter sharing, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:48:53

Speaker: : Yann LeCun

This tutorial covers the concept of training latent variable energy based models (LV-EBMs) and is is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Deep Learning, Parameter sharing, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Intermediate

Duration: 1:04:48

Speaker: : Alfredo Canziani

This lecture covers advanced concepts of energy based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models I, Energy based models II, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced

Duration: 1:54:22

Speaker: : Yann LeCun

- Clinical neuroinformatics (11)
- Brain computer interface (1)
- Digital brain atlasing (4)
- (-) Neuroimaging (22)
- EBRAINS RI (6)
- Machine learning (2)
- Neuromorphic engineering (1)
- (-) Ontologies (1)
- Standards and best practices (15)
- Tools (12)
- Clinical neuroscience (21)
- General neuroscience (6)
- Computational neuroscience (73)
- Statistics (2)
- Computer Science (5)
- (-) Data science (9)
- Open science (2)
- Education (1)
- Neuroethics (5)