Course:

This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI.

Difficulty level: Intermediate

Duration: 12:05

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.

Difficulty level: Intermediate

Duration: 20:12

Speaker: : Mike X. Cohen

Course:

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate

Duration: 12:52

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate

Duration: 17:54

Speaker: : Mike X. Cohen

Course:

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.

Difficulty level: Intermediate

Duration: 5:02

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.

Difficulty level: Intermediate

Duration: 15:01

Speaker: : Mike X. Cohen

Course:

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate

Duration: 5:15

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate

Duration: 22:41

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate

Duration: 17:19

Speaker: : Mike X. Cohen

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat.

Difficulty level: Intermediate

Duration: 1:19:17

Speaker: : Sonny Chen

Course:

This tutorial provides instruction on how to interact with and leverage Python packages to get the most out of Python's suite of available tools for the manipulation, management, analysis, and visualization of neuroscientific data.

Difficulty level: Intermediate

Duration: 1:26:02

Speaker: : Ariel Rokem

Course:

This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.

Difficulty level: Intermediate

Duration: 1:26:06

Speaker: : Bard Ermentrout

Course:

This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons.

Difficulty level: Intermediate

Duration: 1:25:38

Speaker: : Bard Ermentrout

Course:

In this lesson you will learn about fundamental neural phenomena such as oscillations and bursting, and the effects these have on cortical networks.

Difficulty level: Intermediate

Duration: 1:24:30

Speaker: : Bard Ermentrout

Course:

This lesson continues discussing properties of neural oscillations and networks.

Difficulty level: Intermediate

Duration: 1:31:57

Speaker: : Bard Ermentrout

Course:

In this lecture, you will learn about rules governing coupled oscillators, neural synchrony in networks, and theoretical assumptions underlying current understanding.

Difficulty level: Intermediate

Duration: 1:26:02

Speaker: : Bard Ermentrout

Course:

This lesson provides a continued discussion and characterization of coupled oscillators.

Difficulty level: Intermediate

Duration: 1:24:44

Speaker: : Bard Ermentrout

- Brain-computer interface (1)
- Artificial Intelligence (1)
- Provenance (1)
- DANDI archive (1)
- EBRAINS RI (6)
- Clinical neuroscience (23)
- General neuroscience (7)
- General neuroinformatics
(1)
- Computational neuroscience (72)
- Statistics (3)
- Computer Science (4)
- (-) Genomics (7)
- Data science
(9)
- Open science (5)
- Project management (1)
- Education (1)
- Neuroethics (5)