Skip to main content

This lesson provides instructions on how to build and share extensions in NWB.

Difficulty level: Advanced
Duration: 20:29
Speaker: : Ryan Ly

Learn how to build custom APIs for extension.

Difficulty level: Advanced
Duration: 25:40
Speaker: : Andrew Tritt

This tutorial covers how to handle writing very large data in PyNWB.

Difficulty level: Advanced
Duration: 26:50
Speaker: : Andrew Tritt

In this tutorial, users learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB.

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ben Dichter

Learn how to create a standard calcium imaging dataset in NWB using MATLAB.

Difficulty level: Intermediate
Duration: 39:10
Speaker: : Ben Dichter

Learn how to create a standard intracellular electrophysiology dataset in NWB.

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker

This lesson provides a tutorial on how to handle writing very large data in MatNWB. 

Difficulty level: Advanced
Duration: 16:18
Speaker: : Ben Dichter

This lesson gives an overview of the Brainstorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition.

Difficulty level: Intermediate
Duration: 47:47

This lesson provides an overview of the CaImAn package, as well as a demonstration of usage with NWB.

Difficulty level: Intermediate
Duration: 44:37

This lesson gives an overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters.

Difficulty level: Intermediate
Duration: 1:10:28
Speaker: : Alessio Buccino

In this lesson, users will learn about the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework.

Difficulty level: Intermediate
Duration: 47:15
Speaker: : Ben Dichter

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram. 

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons. 

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning. 

Difficulty level: Intermediate
Duration: 13:11
Speaker: : Mike X. Cohen

This lecture discusses the the importance and need for data sharing in clinical neuroscience.

Difficulty level: Intermediate
Duration: 25:22
Speaker: : Thomas Berger