Skip to main content

Conference presentation on computationally demanding studies of synaptic plasticity on the molecular level

Difficulty level: Advanced
Duration: 15:44

Conference presentation on computationally demanding studies of synaptic plasticity on the molecular level

Difficulty level: Advanced
Duration: 15:44

Conference presentation on computationally demanding studies of synaptic plasticity on the molecular level

Difficulty level: Advanced
Duration: 15:44

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 13:11
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 8:21
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 22:01
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 11:20
Speaker: : Mike X. Cohen

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate
Duration: 20:39
Speaker: : Mike X. Cohen

Introduction to stability analysis of neural models

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout

Introduction to stability analysis of neural models

Difficulty level: Intermediate
Duration: 1:25:38
Speaker: : Bard Ermentrout

Oscillations and bursting

Difficulty level: Intermediate
Duration: 1:24:30
Speaker: : Bard Ermentrout

Oscillations and bursting

Difficulty level: Intermediate
Duration: 1:31:57
Speaker: : Bard Ermentrout

Weakly coupled oscillators

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Bard Ermentrout

Continuation of coupled oscillators

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : Bard Ermentrout

Firing rate models.

Difficulty level: Intermediate
Duration: 1:26:42
Speaker: : Bard Ermentrout