This tutorial walks participants through the application of dynamic causal modelling (DCM) to fMRI data using MATLAB. Participants are also shown various forms of DCM, how to generate and specify different models, and how to fit them to simulated neural and BOLD data.
This lesson corresponds to slides 158-187 of the PDF below.
This lecture provides a history of data management, recent developments data management, and a brief description of scientific data management.
The Human Connectome Project aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve never before realized conclusions about the living human brain.
Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture introduces neuroscience concepts and methods such as fMRI, visual respones in BOLD data, and the eccentricity of visual receptive fields.
This tutorial walks users through the creation and visualization of activation flat maps from fMRI datasets.
This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI.
In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.
This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.
This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.
In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
This lesson describes the fundamentals of genomics, from central dogma to design and implementation of GWAS, to the computation, analysis, and interpretation of polygenic risk scores.
This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.