This lecture provides a history of data management, recent developments data management, and a brief description of scientific data management.
This lesson gives a presentation on computationally demanding studies of synaptic plasticity on the molecular level.
This talk presents several computationally demanding studies of synaptic plasticity on the molecular level.
In this lesson you will hear about several computationally demanding studies of synaptic plasticity on the molecular level.
This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.
This lesson provides instructions on how to build and share extensions in NWB.
Learn how to build custom APIs for extension.
This tutorial covers how to handle writing very large data in PyNWB.
This lesson provides a tutorial on how to handle writing very large data in MatNWB.
This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.
In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.
In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.
This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).
This lecture presents the Medical Informatics Platform's data federation in epilepsy.
This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health.
This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.
This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.
This lesson corresponds to slides 1-64 in the PDF below.
This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).
This lesson corresponds to slides 65-90 of the PDF below.
This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.
This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons.