Skip to main content

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity. 

Difficulty level: Intermediate
Duration: 1:16:10
Speaker: : John Griffiths

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices. 

Difficulty level: Intermediate
Duration: 1:39:04

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

In this tutorial, you will learn how to create a standard intracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to create a standard intracellular electrophysiology dataset in NWB.

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker

This lesson provides a tutorial on how to handle writing very large data in MatNWB. 

Difficulty level: Advanced
Duration: 16:18
Speaker: : Ben Dichter

This lesson provides an overview of the CaImAn package, as well as a demonstration of usage with NWB.

Difficulty level: Intermediate
Duration: 44:37

This lesson gives an overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters.

Difficulty level: Intermediate
Duration: 1:10:28
Speaker: : Alessio Buccino

In this lesson, users will learn about the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework.

Difficulty level: Intermediate
Duration: 47:15
Speaker: : Ben Dichter

Similarity Network Fusion (SNF) is a computational method for data integration across various kinds of measurements, aimed at taking advantage of the common as well as complementary information in different data types. This workshop walks participants through running SNF on EEG and genomic data using RStudio.

Difficulty level: Intermediate
Duration: 1:21:38
Speaker: : Dan Felsky