The Genome Browser in the Cloud (GBiC) program is a convenient tool that automates the setup of a UCSC Genome Browser mirror on a cloud instance or a dedicated physical server.
This tutorial gives a demonstration of species/genome assembly selection page (Gateway) on the UCSC Genome Browser.
This tutorial demonstrates how to get the coordinates and sequences of exons using the UCSC Genome Browser.
This tutorial will demonstrate how to locate amino acid numbers for coding genes using the UCSC Genome Browser.
This tutorial will demonstrate how to find the tables in the UCSC database that are associated with the data tracks in the Genome Browser graphical viewer.
This tutorial shows how to navigate between exons of a gene using the UCSC Genome Browser.
This lesson contains the first part of the lecture Data Science and Reproducibility. You will learn about the development of data science and what the term currently encompasses, as well as how neuroscience and data science intersect.
In this second part of the lecture Data Science and Reproducibility, you will learn how to apply the awareness of the intersection between neuroscience and data science (discussed in part one) to an understanding of the current reproducibility crisis in biomedical science and neuroscience.
In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience.
JupyterHub is a simple, highly extensible, multi-user system for managing per-user Jupyter Notebook servers, designed for research groups or classes. This lecture covers deploying JupyterHub on a single server, as well as deploying with Docker using GitHub for authentication.
This demonstration walks through how to import your data into MATLAB.
This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses.
This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.
This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
This brief tutorial goes over how you can easily work with big data as you would with any size of data.
In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.
This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.
This lecture gives an introduction to the FAIR (findability, accessibility, interoperability, and reusability) science principles and examples of their application in neuroscience research.
The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.