Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.
How genetics can contribute to our understanding of psychiatric phenotypes.
Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
This lesson provides an overview of GeneWeaver, a web application for the integrated cross-species analysis of functional genomics data to find convergent evidence from heterogeneous sources.
This lesson provides a demonstration of GeneWeaver, a system for the integration and analysis of heterogeneous functional genomics data.
This lecture outlines GeneNetwork.org, a group of linked data sets and tools used to study complex networks of genes, molecules, and higher order gene function and phenotypes.
This tutorial shows how to use the UCSC genome browser to find a list of genes in a given genomic region.
This tutorial shows how to find all the single nucleotide polymorphisms upstream from genes using the UCSC Genome Browser.
This tutorial demonstrates how to find all the single nucleotide polymorphisms in a gene using the UCSC Genome Browser.
The Saved Sessions feature of the Browser has been around for quite some time, but many of our users have not made full use of it. It offers a great way to keep track of your thinking on a particular topic.
This tutorial demonstrates the visibility controls on the Genome Browser, showing the affect on BED tracks, wiggle tracks and Conservation tracks. It also discusses supertracks and composite tracks.
This tutorial describes the isPCR tool and demonstrates how to use it for predicting the size and location of PCR products and visualizing the genomic location on the genome. The tool operates on DNA templates for all organisms and DNA or RNA on human and mouse. It also demonstrates how to use the Browser to obtain DNA sequences from the genome.
This tutorial describes the dbSNP resources in the UCSC Genome Browser, including display conventions and the subdivision of the data into several useful subset tracks, especially the Common SNPs. There is also a discussion about changes to the genome assemblies from one version to another, and of two ways to navigate between different assemblies of the human genome in the Browser.
This tutorial demonstrates the Data Integrator, a tool that allows combination and intersection of data from up to five primary tables. In the example, data are extracted showing SNPs, genes and phenotypes from a genomic region.
This tutorial shows how to obtain coordinates of genes, then input those coordinates into the Genome Browser for display. The regions do not have to be continuous in the genome.
This tutorial demonstrates the Multi-Region exon-only display mode of the UCSC Genome Browser.