Skip to main content

This lecture provides a historical perspective on reproducibility in science, as well as the current limitations of neuroimaging studies to date. This lecture also lays out a case for the use of meta-analyses, outlining available resources to conduct such analyses. 

Difficulty level: Beginner
Duration: 55:39
Speaker: : Angela Laird

This lecture covers the needs and challenges involved in creating a FAIR ecosystem for neuroimaging research.

Difficulty level: Beginner
Duration: 12:26
Speaker: : Camille Maumet

This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.

Difficulty level: Beginner
Duration: 12:33
Speaker: : David Keator

This lecture covers the processes, benefits, and challenges involved in designing, collecting, and sharing FAIR neuroscience datasets.

Difficulty level: Beginner
Duration: 11:35

This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.

Difficulty level: Beginner
Duration: 12:06
Speaker: : Melanie Ganz

This lecture covers the benefits and difficulties involved when re-using open datasets, and how metadata is important to the process.

Difficulty level: Beginner
Duration: 11:20
Speaker: : Elizabeth DuPre

This lecture provides guidance on the ethical considerations the clinical neuroimaging community faces when applying the FAIR principles to their research. 

Difficulty level: Beginner
Duration: 13:11
Speaker: : Gustav Nilsonne

This lecture covers the ethical implications of the use of functional neuroimaging to assess covert awareness in unconscious patients and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

Difficulty level: Beginner
Duration: 1:00:50
Speaker: : Athena Demertzi

This module covers many of the types of non-invasive neurotech and neuroimaging devices including electroencephalography (EEG), electromyography (EMG), electroneurography (ENG), magnetoencephalography (MEG), and more. 

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning

This introductory lesson welcomes users to the virtual learning series, explaining some of the background behind open-source miniscopes, as well as outlining the rest of the lessons in this course. 

Difficulty level: Beginner
Duration: 16:23

This lesson provides an overview of the Miniscope project, explaining the motivation behind the how and why of Miniscope development, why Miniscopes may be useful for researchers, and the differences between previous and current versions.

Difficulty level: Beginner
Duration: 42:16
Speaker: : Daniel Aharoni

This lesson will go through the theory and practical techniques for implanting a GRIN lens for imaging in mice.

Difficulty level: Beginner
Duration: 1:00:40

This lesson provides instruction on how to build a Miniscope and stream data, including an overview of the software involved.

Difficulty level: Beginner
Duration: 1:04:28

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk

This lesson provides an overview of Neurodata Without Borders (NWB), an ecosystem for neurophysiology data standardization. The lecture also introduces some NWB-enabled tools. 

Difficulty level: Beginner
Duration: 29:53
Speaker: : Oliver Ruebel

This lesson provides instructions on how to build and share extensions in NWB.

Difficulty level: Advanced
Duration: 20:29
Speaker: : Ryan Ly

Learn how to build custom APIs for extension.

Difficulty level: Advanced
Duration: 25:40
Speaker: : Andrew Tritt

This lesson provides instruction on advanced writing strategies in HDF5 that are accessible through PyNWB.

Difficulty level: Advanced
Duration: 23:00
Speaker: : Oliver Ruebel

This lesson provides a tutorial on how to handle writing very large data in MatNWB. 

Difficulty level: Advanced
Duration: 16:18
Speaker: : Ben Dichter