Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible, Interoperable, and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been the successes? What is currently very difficult? Where does neuroscience need to go? This lecture covers the needs and challenges involved in creating a FAIR ecosystem for neuroimaging research.
This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.
This lecture covers the processes, benefits, and challenges involved in designing, collecting, and sharing FAIR neuroscience datasets.
This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.
This lecture covers the benefits and difficulties involved when re-using open datasets, and how metadata is important to the process.
This lecture provides guidance on the ethical considerations the clinical neuroimaging community faces when applying the FAIR principles to their research. This lecture was part of the FAIR approaches for neuroimaging research session at the 2020 INCF Assembly.
This lecture covers the ethical implications of the use of functional neuroimaging to assess covert awareness in unconscious patients and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.
This module covers many of the types of non-invasive neurotech and neuroimaging devices including Electroencephalography (EEG), Electromyography (EMG), Electroneurography (ENG), Magnetoencephalography (MEG), functional Near-Infrared Spectroscopy (fNRIs), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography
The workshop was designed to introduce all aspects of using Miniscopes, including basic principles of Miniscope design and imaging, how to build and attach a Miniscope, how to implant a GRIN lens for imaging deep structures, and how to analyze imaging data. It also covered the most recent developments in Miniscope technology and highlighted some of the best advances in this exciting and growing field. The event was organized by Daniel Aharoni, Denise Cai, and Tristan Shuman, and it was hosted at MetaCell's Workspace for Calcium Imaging Analysis.
This lesson is an overview of the Miniscope project. It will give motivation for why we have developed Miniscopes, how they've been developed, why they may be useful for researchers, and the differences between previous and current versions. While directly applicable to the UCLA Miniscope project, this information can be applied to most mainstream miniature microscopes, including both open source and commercially available models.
This lesson will go through the theory and practical techniques for implanting a GRIN lens for imaging in mice.
Learn how to build a Miniscope and stream data, including an overview of the software involved.
This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.
NWB: An ecosystem for neurophysiology data standardization
Learn how to build and share extensions in NWB
Learn how to build custom APIs for extension
Learn how to handle writing very large data in PyNWB
Learn how to handle writing very large data in MatNWB
This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.
This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.