This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain.
The Virtual Brain (TVB) is an open-source, multi-scale, multi-modal brain simulation platform. In this lesson, you get introduced to brain simulation in general and to TVB in particular. This lesson also presents the newest approaches for clinical applications of TVB - that is, for stroke, epilepsy, brain tumors, and Alzheimer’s disease - and show how brain simulation can improve diagnostics, therapy, and understanding of neurological disease.
This lesson explains the mathematics of neural mass models and their integration to a coupled network. You will also learn about bifurcation analysis, an important technique in the understanding of non-linear systems and as a fundamental method in the design of brain simulations. Lastly, the application of the described mathematics is demonstrated in the exploration of brain stimulation regimes.
In this lesson, the simulation of a virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved clinical results. You will learn about the fundamentals of epilepsy, as well as the concepts underlying epilepsy simulation. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.
This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.
This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.
This opening lecture from INCF's Short Course in Neuroinformatics provides an overview of the field of neuroinformatics itself, as well as laying out an argument for the necessity for developing more sophisticated approaches towards FAIR data management principles in neuroscience.
This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects.
This lecture covers a wide range of aspects regarding neuroinformatics and data governance, describing both their historical developments and current trajectories. Particular tools, platforms, and standards to make your research more FAIR are also discussed.
Presented by the OHBM OpenScienceSIG, this lesson covers how containers can be useful for running the same software on different platforms and sharing analysis pipelines with other researchers.
This lecture covers FAIR atlases, including their background and construction, as well as how they can be created in line with the FAIR principles.
This lecture covers the history of behaviorism and the ultimate challenge to behaviorism.
This lecture covers various learning theories.
This lecture provides an introduction to the study of eye-tracking in humans.
This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.
In this lesson, you will hear about the current challenges regarding data management, as well as policies and resources aimed to address them.
This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.
This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.
This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.
This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.