Skip to main content

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

Introduction to the principal of anatomical organization of neural systems in the human brain and spinal cord that mediate sensation, integrate signals, and motivate behavior.

Difficulty level: Beginner
Duration: 59:57

This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.

Difficulty level: Beginner
Duration: 28:09
Speaker: : Serena Quarta

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture covers the biomedical researcher's perspective on FAIR data sharing and the importance of finding better ways to manage large datasets.

Difficulty level: Beginner
Duration: 10:51
Speaker: : Adam Ferguson

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture covers multiple aspects of FAIR neuroscience data: what makes it unique, the challenges to making it FAIR, the importance of overcoming these challenges, and how data governance comes into play.

Difficulty level: Beginner
Duration: 14:56
Speaker: : Damian Eke

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles.

 

This lecture covers the processes, benefits, and challenges involved in designing, collecting, and sharing FAIR neuroscience datasets.

Difficulty level: Beginner
Duration: 11:35

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.

Difficulty level: Beginner
Duration: 15:57
Speaker: : Andrew Davison

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.

Difficulty level: Beginner
Duration: 13:34

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.

Difficulty level: Beginner
Duration: 18:56
Speaker: : Tom Johnstone

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.

Difficulty level: Beginner
Duration: 15:51

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible,  Interoperable and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture will provide an overview of Addgene, a tool that embraces the FAIR principles developed by members of the INCF Community. This will include an overview of Addgene, their mission, and available resources.

Difficulty level: Beginner
Duration: 12:05
Speaker: : Joanne Kamens

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible,  Interoperable and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture will provide an overview of the INCF Training Suite, a collection of tools that embraces the FAIR principles developed by members of the INCF Community. This will include an overview of TrainingSpace, Neurostars, and KnowledgeSpace.

Difficulty level: Beginner
Duration: 09:50
Speaker: : Mathew Abrams

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of the China-Cuba-Canada neuroinformatics ecosystem for Quantitative Tomographic EEG Analysis (qEEGt).

Difficulty level: Beginner
Duration: 12:56

The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community

 

This lecture covers the IBI Data Standards and Sharing Working Group, including its history, aims, and projects.

Difficulty level: Beginner
Duration: 3:58
Speaker: : Kenji Doya

The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community

 

This lecture covers the framework of the International Brain Lab (IBL) and the data architecture used for this project.

Difficulty level: Beginner
Duration: 23:37
Speaker: : Kenneth Harris

The FOSTER portal has produced a number of guides to help implement Open Science practices in daily workflows, including The Open Science Training Handbook.  It provides many basic definitions, concepts, and principles that are key components of open science, as well as general guidance for developing and implementing these practices in one's own research environments.

 

Topics include:

  • Open Concepts and Principles
  • Open Research Data and Materials
  • Open Research Software and Open Source
  • Reproducible Research and Data Analysis
  • Open Access to Published Research Results
  • Open Licensing and File Formats
  • Collaborative Platforms
  • Open Peer Review, Metrics and Evaluation
  • Open Science Policies
  • Citizen Science
  • Open Educational Resources
  • Open Advocacy
Difficulty level: Beginner
Duration:
Speaker: :