Skip to main content

Félix-Antoine Fortin from Calcul Québec gives an introduction to high-performance computing with the Compute Canada network, first providing an overview of use cases for HPC and then a hand-on tutorial.  Though some examples might seem specific to the Calcul Québec, all computing clusters in the Compute Canada network share the same software modules and environments.

 

The lesson was given in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 02:49:34
Speaker: :

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture covers FAIR atlases, from their background, their construction, and how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lesson gives a description of the BrainHealth Databank, a repository of many types of health-related data, whose aim is to accelerate research, improve care, and to help better understand and diagnose mental illness, as well as develop new treatments and prevention strategies. 

 

This lesson corresponds to slides 46-78 of the PDF below. 

Difficulty level: Beginner
Duration: 1:12:25
Speaker: : Joanna Yu

This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

This lecture covers the structured validation process within computational neuroscience, including the tools, services, and methods involved in simulation and analysis.

Difficulty level: Beginner
Duration: 14:19
Speaker: : Michael Denker

This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler
Course:

This session provides users with an introduction to tools and resources that facilitate the implementation of FAIR in their research.

 

 

Difficulty level: Beginner
Duration: 38:36
Course:

This session will include presentations of infrastructure that embrace the FAIR principles developed by members of the INCF Community.

 

This lecture provides an overview of The Virtual Brain Simulation Platform.

 

Difficulty level: Beginner
Duration: 9:36
Speaker: : Petra Ritter

Peer Herholz gives a tour of how popular virtualization tools like Docker and Singularity are playing a crucial role in improving reproducibility and enabling high-performance computing in neuroscience.

Difficulty level: Beginner
Duration:
Speaker: :

This lecture covers the history of behaviorism and the ultimate challenge to behaviorism. 

Difficulty level: Beginner
Duration: 1:19:08

This lecture covers various learning theories.

Difficulty level: Beginner
Duration: 1:00:42

How genetics can contribute to our understanding of psychiatric phenotypes.

Difficulty level: Beginner
Duration: 55:15
Speaker: : Sven Cichon

The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment.

Difficulty level: Beginner
Duration: 18:13
Speaker: : Mojib Javadi

This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.

Difficulty level: Beginner
Duration: 12:33
Speaker: : David Keator

This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.

Difficulty level: Beginner
Duration: 12:06
Speaker: : Melanie Ganz

This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.

Difficulty level: Beginner
Duration: 15:57
Speaker: : Andrew Davison

This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.

Difficulty level: Beginner
Duration: 13:34

This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.

Difficulty level: Beginner
Duration: 15:51

Enabling multi scale data integration: Turning data to knowledge - Hands-on session 

 

 

Difficulty level: Beginner
Duration: 32:58
Speaker: : Jil Meier