This lecture covers various learning theories.
This lecture provides an introduction to the study of eye-tracking in humans.
This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.
In this lesson, you will learn about how genetics can contribute to our understanding of psychiatric phenotypes.
In this lesson, you will hear about the current challenges regarding data management, as well as policies and resources aimed to address them.
This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.
This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.
This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.
This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.
This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.
This session discussed the secret life of your dataset metadata: the ways in which, for many years to come, it will work non-stop to foster the visibility, reach, and impact of your work. We explored how metadata will help your dataset travel through the global research infrastructure, and how data repositories and discovery services can use this metadata to help launch your dataset into the world.
This lesson provides information on developing data management plans (DMPs), including an overview of how DMPs contribute to effective research efforts, as well as specific development resources and DMP examples.
In this session, participants will take an in-depth look at the newly launched DMP Assistant 2.0, including all of its enhanced key features for both end-users and institutional administrators, as well as a brief look at the future of the platform.
This lesson discusses the need for and approaches to integrating data across the various temporal and spatial scales in which brain activity can be measured.
This lesson consists of lecture and tutorial components, focusing on resources and tools which facilitate multi-scale brain modeling and simulation.
In this talk, challenges of handling complex neuroscientific data are discussed, as well as tools and services for the annotation, organization, storage, and sharing of these data.
This lecture describes the neuroscience data respository G-Node Infrastructure (GIN), which provides platform independent data access and enables easy data publishing.