The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.
This lecture presents the Graphical (GUI) and Command Line (CLI) User Interface of TVB. Alongside with the speakers, explore and interact with all means necessary to generate, manipulate and visualize connectivity and network dynamics. Speakers: Paula Popa & Mihai Andrei
This lecture briefly introduces The Virtual Brain (TVB), a multi-scale, multi-modal neuroinformatics platform for full brain network simulations using biologically realistic connectivity, as well as its potential neuroscience applications: for example with epilepsy.
This lecture introduces the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components.
Tutorial on how to use TVB-NEST toolbox on your local computer. Authors: D. Perdikis, L. Domide, M. Schirner, P. Ritter
Tutorial on how to perform multi-scale simulation of Alzheimer's disease on The Virtual Brain Simulation Platform. Authors: L. Stefanovski, P. Triebkorn, M.A. Diaz-Cortes, A. Solodkin, V. Jirsa, A.R. McIntosh, P. Ritter
Audio slides presentation to accompany the paper titled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Authors: M. Schirner, S. Rothmeier, V. Jirsa, A.R. McIntosh, P. Ritter.
Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.
The tutorial is intended primarily for beginners, but it will also beneficial to experimentalists who understand electroencephalography and event related techniques, but need additional knowledge in annotation, standardization, long-term storage and publication of data.
Introduction to the first phases of EEG/ERP data lifecycle
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to the FAIR Principles and examples of applications of the FAIR Principles in neuroscience. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.