In this lesson, the simulation of a virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved clinical results. You will learn about the fundamentals of epilepsy, as well as the concepts underlying epilepsy simulation. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.
This lecture presents the Graphical (GUI) and Command Line (CLI) User Interface of TVB. Alongside with the speakers, explore and interact with all means necessary to generate, manipulate and visualize connectivity and network dynamics.
This lecture briefly introduces The Virtual Brain (TVB), a multi-scale, multi-modal neuroinformatics platform for full brain network simulations using biologically realistic connectivity, as well as its potential neuroscience applications (e.g., epilepsy cases).
This lecture introduces the theoretical background and foundations that led to the development of TVB, its architecture, and features of its major software components.
This presentation accompanies the paper entitled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data (see link below to download publication).
This lecture provides an overview of successful open-access projects aimed at describing complex neuroscientific models, and makes a case for expanded use of resources in support of reproducibility and validation of models against experimental data.
This demonstration walks through how to import your data into MATLAB.
This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses.
This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.
This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
This brief tutorial goes over how you can easily work with big data as you would with any size of data.
In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.
This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.
This lecture gives an introduction to the FAIR (findability, accessibility, interoperability, and reusability) science principles and examples of their application in neuroscience research.
The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.
This lecture on model types introduces the advantages of modeling, provide examples of different model types, and explain what modeling is all about.
This lecture summarizes the concepts introduced in Model Types I and further explains how models can be used answer different scientific questions.
This lecture focuses on how to get from a scientific question to a model using concrete examples. We will present a 10-step practical guide on how to succeed in modeling. This lecture contains links to 2 tutorials, lecture/tutorial slides, suggested reading list, and 3 recorded Q&A sessions.
This lecture formalizes modeling as a decision process that is constrained by a precise problem statement and specific model goals. We provide real-life examples on how model building is usually less linear than presented in Modeling Practice I.