This tutorial describes the dbSNP resources in the UCSC Genome Browser, including display conventions and the subdivision of the data into several useful subset tracks, especially the Common SNPs. There is also a discussion about changes to the genome assemblies from one version to another, and of two ways to navigate between different assemblies of the human genome in the Browser.
This tutorial demonstrates the Data Integrator, a tool that allows combination and intersection of data from up to five primary tables. In the example, data are extracted showing SNPs, genes and phenotypes from a genomic region.
This tutorial shows how to obtain coordinates of genes, then input those coordinates into the Genome Browser for display. The regions do not have to be continuous in the genome.
This tutorial demonstrates the Multi-Region exon-only display mode of the UCSC Genome Browser.
This tutorial demonstrates viewing alternate haplotypes with the UCSC Genome Browser.
This tutorial demonstrates how to get the coordinates and sequences of exons using the UCSC Genome Browser.
This tutorial will demonstrate how to locate amino acid numbers for coding genes using the UCSC Genome Browser.
This tutorial will demonstrate how to find the tables in the UCSC database that are associated with the data tracks in the Genome Browser graphical viewer.
This tutorial shows how to navigate between exons of a gene using the UCSC Genome Browser.
This tutorial talks about how to upload and version your data in OpenNeuro.org
This tutorial shows how to share your data in OpenNeuro.org
This tutorial shows how to run analysis in OpenNeuro.org
The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment.
Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.
Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.
This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.
This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.