This tutorial shows how to navigate between exons of a gene using the UCSC Genome Browser.
This tutorial talks about how to upload and version your data in OpenNeuro.org
This tutorial shows how to share your data in OpenNeuro.org
This tutorial shows how to run analysis in OpenNeuro.org
The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment.
Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.
Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.
This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.
This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.
This video introduces the key principles for data organisation and explains how you could make your data FAIR for data sharing on EBRAINS.
This video explains what metadata is, why it is important, and how you can organise your metadata to increase the FAIRness of your data on EBRAINS.
This video introduces the importance of writing a Data Descriptor to accompany your dataset on EBRAINS. It gives concrete examples on what information to include and highlights how this makes your data more FAIR.