Skip to main content

This lecture gives an overview on the article Individual brain structure and modelling predict seizure propagation, in which 15 subjects with epilepsy were modelled to predict individual epileptogenic zones. With the TVB GUI we will model seizure spread and the effect of lesioning the connectome. The impact of cutting edges in the network on seizure spreading will be visualized.

Difficulty level: Beginner
Duration: 9:39
Speaker: : Paul Triebkorn

This lecture presents the Graphical (GUI) and Command Line (CLI) User Interface of TVB. Alongside with the speakers, explore and interact with all means necessary to generate, manipulate and visualize connectivity and network dynamics.

Difficulty level: Beginner
Duration: 1:02:16

This tutorial demonstrates how to use the image processing pipeline with the HBP collab.

Difficulty level: Beginner
Duration: 5:55

This tutorial provides instruction on how to use the TVB-NEST toolbox co-simulation in HBP collab.

Difficulty level: Beginner
Duration: 3:11

In this tutorial, you will learn how to use TVB-NEST toolbox on your local computer.

Difficulty level: Beginner
Duration: 2:16

This tutorial provides instruction on how to perform multi-scale simulation of Alzheimer's disease on The Virtual Brain Simulation Platform.

Difficulty level: Beginner
Duration: 29:08

This presentation accompanies the paper entitled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data (see link below to download publication). 

Difficulty level: Beginner
Duration: 4:56

This lesson consists of a supplementary video for the publication: Inferring multi-scale neural mechanisms with brain network modelling.

Difficulty level: Beginner
Duration: 3:06

Research Resource Identifiers (RRIDs) are ID numbers assigned to help researchers cite key resources (e.g., antibodies, model organisms, and software projects) in biomedical literature to improve the transparency of research methods.

Difficulty level: Beginner
Duration: 1:01:36
Speaker: : Maryann Martone

This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez

This lecture on model types introduces the advantages of modeling, provide examples of different model types, and explain what modeling is all about. 

Difficulty level: Beginner
Duration: 27:48
Speaker: : Gunnar Blohm

This lecture focuses on how to get from a scientific question to a model using concrete examples. We will present a 10-step practical guide on how to succeed in modeling. This lecture contains links to 2 tutorials, lecture/tutorial slides, suggested reading list, and 3 recorded Q&A sessions.

Difficulty level: Beginner
Duration: 29:52
Speaker: : Megan Peters

This lecture formalizes modeling as a decision process that is constrained by a precise problem statement and specific model goals. We provide real-life examples on how model building is usually less linear than presented in Modeling Practice I

Difficulty level: Beginner
Duration: 22:51
Speaker: : Gunnar Blohm

This lecture focuses on the purpose of model fitting, approaches to model fitting, model fitting for linear models, and how to assess the quality and compare model fits. We will present a 10-step practical guide on how to succeed in modeling. 

Difficulty level: Beginner
Duration: 26:46
Speaker: : Jan Drugowitsch

This lecture summarizes the concepts introduced in Model Fitting I and adds two additional concepts: 1) MLE is a frequentist way of looking at the data and the model, with its own limitations. 2) Side-by-side comparisons of bootstrapping and cross-validation.

Difficulty level: Beginner
Duration: 38.17
Speaker: : Kunlin Wei

This lecture provides an overview of the generalized linear models (GLM) course, originally a part of the Neuromatch Academy (NMA), an interactive online summer school held in 2020. NMA provided participants with experiences spanning from hands-on modeling experience to meta-science interpretation skills across just about everything that could reasonably be included in the label "computational neuroscience". 

Difficulty level: Beginner
Duration: 33:58
Speaker: : Cristina Savin

This lecture further develops the concepts introduced in Machine Learning I. This lecture is part of the Neuromatch Academy (NMA), an interactive online computational neuroscience summer school held in 2020.

Difficulty level: Beginner
Duration: 29:30
Speaker: : I. Memming Park

This lecture introduces the core concepts of dimensionality reduction.

Difficulty level: Beginner
Duration: 31:43
Speaker: : Byron Yu