This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.
This lesson gives a brief introduction to the course Neuroscience for Machine Learners (Neuro4ML).
This lesson covers the history of neuroscience and machine learning, and the story of how these two seemingly disparate fields are increasingly merging.
In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience.
This module explores sensation in the brain: what organs are involved, sensory pathways, processing centers, and theories of integration.
This module covers how the brain interacts with the world through motor movements. Motor movements underlie so much of our functioning, our speech, the opening and closing of our eyes, and the beating of our hearts.
This lesson provides an overview of the structure and function of the neuron, its components and mechanisms, action potentials, and the many glial cells that support it.
This module explains how neurons come together to create the networks that give rise to our thoughts. The totality of our neurons and their connection is called our connectome. Learn how this connectome changes as we learn, and computes information.
This lecture provides an introduction to the study of eye-tracking in humans.
This demonstration walks through how to import your data into MATLAB.
This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses.
This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.
This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
This brief tutorial goes over how you can easily work with big data as you would with any size of data.
In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.
This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.
The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.
This lecture covers the description and brief history of data science and its use in neuroinformatics.
This lesson provides an overview of self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.