Skip to main content

Félix-Antoine Fortin from Calcul Québec gives an introduction to high-performance computing with the Compute Canada network, first providing an overview of use cases for HPC and then a hand-on tutorial.  Though some examples might seem specific to the Calcul Québec, all computing clusters in the Compute Canada network share the same software modules and environments.

 

The lesson was given in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 02:49:34
Speaker: :

Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.

 

This talk was given in the context of a Ludmer Centre event in 2019.

 

 

Difficulty level: Beginner
Duration: 56:07
Speaker: :

This course will teach you AWS basics right through to advanced cloud computing concepts. There are lots of hands-on exercises using an AWS free tier account to give you practical experience with Amazon Web Services. Visual slides and animations will help you gain a deep understanding of Cloud Computing.

 

This lesson is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 05:27:20
Speaker: :

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec
Course:

Neuronify is an educational tool meant to create intuition for how neurons and neural networks behave. You can use it to combine neurons with different connections, just like the ones we have in our brain, and explore how changes on single cells lead to behavioral changes in important networks. Neuronify is based on an integrate-and-fire model of neurons. This is one of the simplest models of neurons that exist. It focuses on the spike timing of a neuron and ignores the details of the action potential dynamics. These neurons are modeled as simple RC circuits. When the membrane potential is above a certain threshold, a spike is generated and the voltage is reset to its resting potential. This spike then signals other neurons through its synapses.

Neuronify aims to provide a low entry point to simulation-based neuroscience.

Difficulty level: Beginner
Duration: 01:25
Speaker: : Neuronify

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture covers FAIR atlases, from their background, their construction, and how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

Learn how to handle writing very large data in MatNWB

Difficulty level: Advanced
Duration: 16:18
Speaker: : Ben Dichter

This video explains what metadata is, why it is important, and how you can organise your metadata to increase the FAIRness of your data on EBRAINS.

Difficulty level: Beginner
Duration: 17:23
Speaker: : Ulrike Schlegel

Elizabeth Dupre provides reviews some standards for project management and organization, including motivation in the view of the FAIR principles and improved reproducibility.

Difficulty level: Beginner
Duration: 01:08:34
Speaker: : Elizabeth DuPre

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.

Difficulty level: Beginner
Duration: 15:57
Speaker: : Andrew Davison

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.

Difficulty level: Beginner
Duration: 13:34

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.

Difficulty level: Beginner
Duration: 18:56
Speaker: : Tom Johnstone

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.

Difficulty level: Beginner
Duration: 15:51

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible,  Interoperable and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture will provide an overview of the INCF Training Suite, a collection of tools that embraces the FAIR principles developed by members of the INCF Community. This will include an overview of TrainingSpace, Neurostars, and KnowledgeSpace.

Difficulty level: Beginner
Duration: 09:50
Speaker: : Mathew Abrams

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture contains an overview of the China-Cuba-Canada neuroinformatics ecosystem for Quantitative Tomographic EEG Analysis (qEEGt).

Difficulty level: Beginner
Duration: 12:56