Skip to main content

U-Nets for medical Image-Segmentation  -  Day 13 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 16:45
Speaker: : Moritz Wolter

Sequence Processing -  Day 15 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 47:45
Speaker: : Moritz Wolter

This video will document the process of uploading data into a brainlife project using ezBIDS.

Difficulty level: Beginner
Duration: 6:15
Speaker: :

This short video walks you through the steps of publishing a dataset on brainlife, an open-source, free and secure reproducible neuroscience analysis platform.

Difficulty level: Beginner
Duration: 1:18
Speaker: :

This video shows how to use the brainlife.io interface to edit the participants' info file. This file is the ParticipantInfo.json file of the Brain Imaging Data Structure (BIDS).

Difficulty level: Beginner
Duration: 0:34
Speaker: :

This video will document the process of running an app on brainlife, from data staging to archiving of the final data outputs.

Difficulty level: Beginner
Duration: 3:43
Speaker: :

This video will document the process of visualizing the provenance of each step performed to generate a data object on brainlife.

Difficulty level: Beginner
Duration: 0:21
Speaker: :

This video will document the process of downloading and running the "reproduce.sh" script, which will automatically run all of the steps to generate a data object locally on a user's machine.

Difficulty level: Beginner
Duration: 3:44
Speaker: :

This brief video walks you through the steps necessary when creating a project on brainlife.io. 

Difficulty level: Beginner
Duration: 1:45
Speaker: :

This brief video rus through how to make an accout on brainlife.io.

Difficulty level: Beginner
Duration: 0:30
Speaker: :

This video will document how to run a correlation analysis between the gray matter volume of two different structures using the output from brainlife app-freesurfer-stats.

Difficulty level: Beginner
Duration: 1:33
Speaker: :

This short video shows how a brainlife.io publication can be opened from the Data Deposition page of the journal Nature Scientific Data.

Difficulty level: Beginner
Duration: 2:25
Speaker: :

This short video shows how data in a brainlife.io publication can be opened from a DOI inside a published article. The video provides an example of how the DOI deposited on the journal can be opened with a web browser to redirect to the associated data publication on brainlife.io.

Difficulty level: Beginner
Duration: 2:18
Speaker: :

In this lesson, you will learn about how genetics can contribute to our understanding of psychiatric phenotypes.

Difficulty level: Beginner
Duration: 55:15
Speaker: : Sven Cichon

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll

In this tutorial, you will learn the basic features of uploading and versioning your data within OpenNeuro.org.

Difficulty level: Beginner
Duration: 5:36
Speaker: : OpenNeuro

This tutorial shows how to share your data in OpenNeuro.org.

Difficulty level: Beginner
Duration: 1:22
Speaker: : OpenNeuro

Following the previous two tutorials on uploading and sharing data with OpenNeuro.org, this tutorial briefly covers how to run various analyses on your datasets.

Difficulty level: Beginner
Duration: 2:26
Speaker: : OpenNeuro

This lesson gives an introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier

The Allen Mouse Brain Atlas is a genome-wide, high-resolution atlas of gene expression throughout the adult mouse brain. This tutorial describes the basic search and navigation features of the Allen Mouse Brain Atlas.

Difficulty level: Beginner
Duration: 6:40