Skip to main content

The practical usage of The Virtual brain in its graphical user interface and via python scripts is introduced. In the graphical user interface, you are guided through its data repository, simulator, phase plane exploration tool, connectivity editor, stimulus generator and the provided analyses. The implemented iPython notebooks of TVB are presented, and since they are public, can be used for further exploration of The Virtual brain.

Difficulty level: Beginner
Duration: 1:12:24
Speaker: : Paul Triebkorn
Course:

Colt Steele provides a comprehensive introduction to the command line and 50 popular Linux commands.  This is a long course (nearly 5 hours) but well worth it if you are going to spend a good part of your career working from a terminal, which is likely if you are interested in flexibility, power, and reproducibility in neuroscience research.

 

This lesson is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 05:00:16
Speaker: :

Félix-Antoine Fortin from Calcul Québec gives an introduction to high-performance computing with the Compute Canada network, first providing an overview of use cases for HPC and then a hand-on tutorial.  Though some examples might seem specific to the Calcul Québec, all computing clusters in the Compute Canada network share the same software modules and environments.

 

The lesson was given in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 02:49:34
Speaker: :

Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.

 

This talk was given in the context of a Ludmer Centre event in 2019.

 

 

Difficulty level: Beginner
Duration: 56:07
Speaker: :

This course will teach you AWS basics right through to advanced cloud computing concepts. There are lots of hands-on exercises using an AWS free tier account to give you practical experience with Amazon Web Services. Visual slides and animations will help you gain a deep understanding of Cloud Computing.

 

This lesson is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 05:27:20
Speaker: :

Learn how to handle writing very large data in MatNWB

Difficulty level: Advanced
Duration: 16:18
Speaker: : Ben Dichter

This video explains what metadata is, why it is important, and how you can organise your metadata to increase the FAIRness of your data on EBRAINS.

Difficulty level: Beginner
Duration: 17:23
Speaker: : Ulrike Schlegel

This lecture covers advanced concept of energy based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models IEnergy based models II, Energy based models III, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Beginner
Duration: 56:41
Speaker: : Alfredo Canziani

This tutorial covers LV-EBM to target prop to (vanilla, denoising, contractive, variational) autoencoder and a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models IEnergy based models IIEnergy based models III, Energy based models IV, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:00:34
Speaker: : Alfredo Canziani

This tutorial covers the concepts of autoencoders, denoising encoders, and variational autoencoders (VAE) with PyTorch, as well as generative adversarial networks and code. It is a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models IEnergy based models IIEnergy based models IIIEnergy based models IV, Energy based models V, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:07:50
Speaker: : Alfredo Canziani

This tutorial covers advanced concept of energy based models. The lecture is a part of the Associative memories modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. 

Difficulty level: Advanced
Duration: 1:12:00
Speaker: : Alfredo Canziani

This tutuorial covers the concept of Graph convolutional networks and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Modules 1 - 5 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 57:33
Speaker: : Alfredo Canziani

This lecture covers the concept of model predictive control and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Models 1-6 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:10:22
Speaker: : Alfredo Canziani

This lecture covers the concepts of emulation of kinematics from observations and training a policy. It is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Models 1-6 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:01:21
Speaker: : Alfredo Canziani

This lecture covers the concept of predictive policy learning under uncertainty and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Models 1-6 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:14:44
Speaker: : Alfredo Canziani

This lecture covers the concepts of gradient descent, stochastic gradient descent, and momentum. It is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this module include: Models 1-7 of this course and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Advanced
Duration: 1:51:32
Speaker: : Alfredo Canziani

As a part of NeuroHackademy 2021, Noah Benson gives an introduction to Pytorch, one of the two most common software packages for deep learning applications to the neurosciences.

Difficulty level: Beginner
Duration: 00:50:40
Speaker: :

In this hands-on tutorial, Dr. Robert Guangyu Yang works through a number of coding exercises to see how RNNs can be easily used to study cognitive neuroscience questions, with a quick demonstration of how we can train and analyze RNNs on various cognitive neuroscience tasks. Familiarity of Python and basic knowledge of Pytorch are assumed.

Difficulty level: Beginner
Duration: 00:26:38
Speaker: :

Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas

Difficulty level: Beginner
Duration: 6:40
Speaker: : Unknown

Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas

Difficulty level: Beginner
Duration: 6:35
Speaker: : Unknown