Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial is part 1 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.
This tutorial is part 2 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
Learn how to build and share extensions in NWB
Learn how to build custom APIs for extension
Learn how to handle writing very large data in PyNWB
Learn how to handle writing very large data in MatNWB