This lesson provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to. The lesson was presented in the context of the BrainHack School 2020.
This lesson provides a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.
This lesson presents advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.
This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.
In this lecture, attendees will learn about the opportunities and challenges associated with Recurrent Neural Networks (RNNs), which, when trained with machine learning techniques on cognitive tasks, have become a widely accepted tool for neuroscientists.
Overview of the content for Day 1 of this course.
Overview of Day 2 of this course.
Best practices: the tips and tricks on how to get your Miniscope to work and how to get your experiments off the ground.
This talk compares various sensors and resolutions for in vivo neural recordings.
This talk delves into challenges and opportunities of Miniscope design, seeking the optimal balance between scale and function.
Attendees of this talk will learn aobut computational imaging systems and associated pipelines, as well as open-source software solutions supporting miniscope use.
This talk covers the present state and future directions of calcium imaging data analysis, particularly in the context of one-photon vs two-photon approaches.
In this talk, results from rodent experimentation using in vivo imaging are presented, demonstrating how the monitoring of neural ensembles may reveal patterns of learning during spatial tasks.
How to start processing the raw imaging data generated with a Miniscope, including developing a usable pipeline and demoing the Minion pipeline.
The direction of miniature microscopes, including both MetaCell and other groups.
Overview of the content for Day 2 of this course.
Summary and closing remarks for this three-day course.
This hands-on tutorial explains how to run your own Minion session in the MetaCell cloud using jupityr notebooks.
In this hands-on analysis tutorial, users will mimic a kernel crash and learn the steps to restore inputs in such a case.
This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.