Skip to main content

In this talk, you will learn about the standardization schema for data formats among two of the US BRAIN Initiative networks: the Cell Census Network (BICCN) and the Cell Atlas Network (BICAN). 

Difficulty level: Beginner
Duration: 14:58
Course:

Brief introduction to Research Resource Identifiers (RRIDs), persistent and unique identifiers for referencing a research resource. 

Difficulty level: Beginner
Duration: 1:30
Speaker: : Anita Bandrowski

Research Resource Identifiers (RRIDs) are ID numbers assigned to help researchers cite key resources (e.g., antibodies, model organisms, and software projects) in biomedical literature to improve the transparency of research methods.

Difficulty level: Beginner
Duration: 1:01:36
Speaker: : Maryann Martone
Course:

The Brain Imaging Data Structure (BIDS) is a standard prescribing a formal way to name and organize MRI data and metadata in a file system that simplifies communication and collaboration between users and enables easier data validation and software development through using consistent paths and naming for data files.

Difficulty level: Beginner
Duration: 0:56
Course:

Neurodata Without Borders (NWB) is a data standard for neurophysiology that provides neuroscientists with a common standard to share, archive, use, and build common analysis tools for neurophysiology data.

Difficulty level: Beginner
Duration: 1:11
Speaker: : Ben Dichter
Course:

The Neuroimaging Data Model (NIDM) is a collection of specification documents that define extensions the W3C PROV standard for the domain of human brain mapping. NIDM uses provenance information as means to link components from different stages of the scientific research process from dataset descriptors and computational workflow, to derived data and publication.

Difficulty level: Beginner
Duration: 0:53

This lesson provides a brief introduction to the Neuroscience Information Exchange (NIX) Format data model, which allows storing fully annotated scientific datasets, i.e., data combined with rich metadata and their relations in a consistent, comprehensive format.

Difficulty level: Beginner
Duration: 1:03
Speaker: : Thomas Wachtler

This lecture provides an overview of successful open-access projects aimed at describing complex neuroscientific models, and makes a case for expanded use of resources in support of reproducibility and validation of models against experimental data.

Difficulty level: Beginner
Duration: 1:00:39
Speaker: : Sharon Crook

This lesson provides an overview of Neurodata Without Borders (NWB), an ecosystem for neurophysiology data standardization. The lecture also introduces some NWB-enabled tools. 

Difficulty level: Beginner
Duration: 29:53
Speaker: : Oliver Ruebel

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec
Course:

Neuronify is an educational tool meant to create intuition for how neurons and neural networks behave. You can use it to combine neurons with different connections, just like the ones we have in our brain, and explore how changes on single cells lead to behavioral changes in important networks. Neuronify is based on an integrate-and-fire model of neurons. This is one of the simplest models of neurons that exist. It focuses on the spike timing of a neuron and ignores the details of the action potential dynamics. These neurons are modeled as simple RC circuits. When the membrane potential is above a certain threshold, a spike is generated and the voltage is reset to its resting potential. This spike then signals other neurons through its synapses.

Neuronify aims to provide a low entry point to simulation-based neuroscience.

Difficulty level: Beginner
Duration: 01:25
Speaker: : Neuronify

This lecture covers the linking neuronal activity to behavior using AI-based online detection. 

Difficulty level: Beginner
Duration: 30:39

This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity. 

Difficulty level: Beginner
Duration: 1:22:06
Speaker: : Daniel Buchman

This lesson describes a definitional framework for fairness and health equity in the age of the algorithm. While acknowledging the impressive capability of machine learning to positively affect health equity, this talk outlines potential (and actual) pitfalls which come with such powerful tools, ultimately making the case for collaborative, interdisciplinary, and transparent science as a way to operationalize fairness in health equity. 

Difficulty level: Beginner
Duration: 1:06:35
Speaker: : Laura Sikstrom

This lesson provides an overview of self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.

Difficulty level: Beginner
Duration: 25:50
Speaker: : Eva Dyer

As a part of NeuroHackademy 2020, Elizabeth DuPre gives a lecture on "Nilearn", a python package that provides flexible statistical and machine-learning tools for brain volumes by leveraging the scikit-learn Python toolbox for multivariate statistics.  This includes predictive modelling, classification, decoding, and connectivity analysis.

 

This video is courtesy of the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 01:49:18
Speaker: : Elizabeth DuPre

This lesson provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to. The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:22:18
Speaker: : Estefany Suárez

This lesson provides a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.

Difficulty level: Beginner
Duration: 02:13:53
Speaker: : Jake Vogel

This lesson presents advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.

Difficulty level: Beginner
Duration: 01:17:14
Speaker: : Gael Varoquaux

This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.

Difficulty level: Beginner
Duration: 02:09:22
Speaker: :