Skip to main content

This lesson describes a definitional framework for fairness and health equity in the age of the algorithm. While acknowledging the impressive capability of machine learning to positively affect health equity, this talk outlines potential (and actual) pitfalls which come with such powerful tools, ultimately making the case for collaborative, interdisciplinary, and transparent science as a way to operationalize fairness in health equity. 

Difficulty level: Beginner
Duration: 1:06:35
Speaker: : Laura Sikstrom

This lesson gives a brief introduction to the course Neuroscience for Machine Learners (Neuro4ML). 

Difficulty level: Beginner
Duration: 1:25
Speaker: : Dan Goodman

This lesson covers the history of neuroscience and machine learning, and the story of how these two seemingly disparate fields are increasingly merging. 

Difficulty level: Beginner
Duration: 12:25
Speaker: : Dan Goodman

In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience. 

Difficulty level: Beginner
Duration: 5:42
Speaker: : Dan Goodman

This lesson provides an overview of self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.

Difficulty level: Beginner
Duration: 25:50
Speaker: : Eva Dyer

As a part of NeuroHackademy 2020, Elizabeth DuPre gives a lecture on "Nilearn", a python package that provides flexible statistical and machine-learning tools for brain volumes by leveraging the scikit-learn Python toolbox for multivariate statistics.  This includes predictive modelling, classification, decoding, and connectivity analysis.

 

This video is courtesy of the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 01:49:18
Speaker: : Elizabeth DuPre

This lesson provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to. The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:22:18
Speaker: : Estefany Suárez

This lesson provides a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.

Difficulty level: Beginner
Duration: 02:13:53
Speaker: : Jake Vogel

This lesson presents advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.

Difficulty level: Beginner
Duration: 01:17:14
Speaker: : Gael Varoquaux

This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.

Difficulty level: Beginner
Duration: 02:09:22
Speaker: :

In this lecture, attendees will learn about the opportunities and challenges associated with Recurrent Neural Networks (RNNs), which, when trained with machine learning techniques on cognitive tasks, have become a widely accepted tool for neuroscientists.

Difficulty level: Beginner
Duration: 00:51:12

This talk describes the NIH-funded SPARC Data Structure, and how this project navigates ontology development while keeping in mind the FAIR science principles. 

Difficulty level: Beginner
Duration: 25:44
Speaker: : Fahim Imam
Course:

This lecture covers structured data, databases, federating neuroscience-relevant databases, and ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

This lecture covers FAIR atlases, including their background and construction, as well as how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lesson gives a description of the BrainHealth Databank, a repository of many types of health-related data, whose aim is to accelerate research, improve care, and to help better understand and diagnose mental illness, as well as develop new treatments and prevention strategies. 

 

This lesson corresponds to slides 46-78 of the PDF below. 

Difficulty level: Beginner
Duration: 1:12:25
Speaker: : Joanna Yu

This talk goes over Neurobagel, an open-source platform developed for improved dataset sharing and searching. 

Difficulty level: Beginner
Duration: 13:37

This lightning talk describes the heterogeneity of the MR field regarding types of scanners, data formats, protocols, and software/hardware versions, as well as the challenges and opportunities for unifying these datasets in a common interface, MRdataset.

Difficulty level: Beginner
Duration: 5:15
Speaker: : Harsh Sinha

This lesson describes the current state of brain-computer interface (BCI) standards, including the present obstacles hindering the forward movement of BCI standardization as well as future steps aimed at solving this problem. 

Difficulty level: Beginner
Duration: 15:01

This lightning talk gives an outline of the DataLad ecosystem for large-scale collaborations, and how DataLad addresses challenges that may arise in such research cooperations.

Difficulty level: Beginner
Duration: 2:54

In this lightning talk, you will learn about BrainGlobe, an initiative which exists to facilitate the development of interoperable Python-based tools for computational neuroanatomy.

Difficulty level: Beginner
Duration: 3:33