Skip to main content
Course:

Brief introduction to Research Resource Identifiers (RRIDs), persistent and unique identifiers for referencing a research resource. 

Difficulty level: Beginner
Duration: 1:30
Speaker: : Anita Bandrowski

Research Resource Identifiers (RRIDs) are ID numbers assigned to help researchers cite key resources (antibodies, model organisms and software projects) in the biomedical literature to improve transparency of research methods.

Difficulty level: Beginner
Duration: 1:01:36
Speaker: : Maryann Martone
Course:

The Brain Imaging Data Structure (BIDS) is a standard prescribing a formal way to name and organize MRI data and metadata in a file system that simplifies communication and collaboration between users and enables easier data validation and software development through using consistent paths and naming for data files.

Difficulty level: Beginner
Duration: 0:56
Course:

Neurodata Without Borders (NWB) is a data standard for neurophysiology that provides neuroscientists with a common standard to share, archive, use, and build common analysis tools for neurophysiology data.

Difficulty level: Beginner
Duration: 1:11
Speaker: : Ben Dichter
Course:

The Neuroimaging Data Model (NIDM) is a collection of specification documents that define extensions the W3C PROV standard for the domain of human brain mapping. NIDM uses provenance information as means to link components from different stages of the scientific research process from dataset descriptors and computational workflow, to derived data and publication.

Difficulty level: Beginner
Duration: 0:53

Neuroscience Information Exchange (NIX) Format data model allows storing fully annotated scientific datasets, i.e. the data together with rich metadata and their relations in a consistent, comprehensive format. Its aim is to achieve standardization by providing a common data structure and APIs for a multitude of data types and use cases, focused on but not limited to neuroscience. In contrast to most other approaches, the NIX approach is to achieve this flexibility with a minimum set of data model elements.

Difficulty level: Beginner
Duration: 1:03
Speaker: : Thomas Wachtler

Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.

Difficulty level: Beginner
Duration: 1:00:39
Speaker: : Sharon Crook

NWB: An ecosystem for neurophysiology data standardization

Difficulty level: Beginner
Duration: 29:53
Speaker: : Oliver Ruebel

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture covers FAIR atlases, from their background, their construction, and how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lesson gives a description of the BrainHealth Databank, a repository of many types of health-related data, whose aim is to accelerate research, improve care, and to help better understand and diagnose mental illness, as well as develop new treatments and prevention strategies. 

 

This lesson corresponds to slides 46-78 of the PDF below. 

Difficulty level: Beginner
Duration: 1:12:25
Speaker: : Joanna Yu

This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research. 

Difficulty level: Beginner
Duration: 57:52
Speaker: : Satrajit Ghosh

An agent for reproducible neuroimaging

Difficulty level: Beginner
Duration: 1:00:10
Speaker: : David Kennedy

The Human Connectome Project aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve never before realized conclusions about the living human brain.

Difficulty level: Advanced
Duration: 59:06
Speaker: : Jennifer Elam

This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

This lecture covers the structured validation process within computational neuroscience, including the tools, services, and methods involved in simulation and analysis.

Difficulty level: Beginner
Duration: 14:19
Speaker: : Michael Denker

This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler
Course:

This session provides users with an introduction to tools and resources that facilitate the implementation of FAIR in their research.

 

 

Difficulty level: Beginner
Duration: 38:36
Course:

This session will include presentations of infrastructure that embrace the FAIR principles developed by members of the INCF Community.

 

This lecture provides an overview of The Virtual Brain Simulation Platform.

 

Difficulty level: Beginner
Duration: 9:36
Speaker: : Petra Ritter