This lesson provides an introduction and live demonstration of neurolib, a computational framework for simulating coupled neural mass models written in Python. Neurolib provides a simulation and optimization framework which allows you to easily implement your own neural mass model, simulate fMRI BOLD activity, analyse the results and fit your model to empirical data.
In this lesson, you will learn about the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks. GeNN is an open-source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users.
This video gives a short introduction to the EBRAINS data sharing platform, why it was developed, and how it contributes to open data sharing.
This video demonstrates how to find, access, and download data on EBRAINS.
This lesson gives a tour of how popular virtualization tools like Docker and Singularity are playing a crucial role in improving reproducibility and enabling high-performance computing in neuroscience.
This lesson gives a demonstration of how to use SciUnit, a Pythonic framework for data-driven unit testing that separates the interface from the implementation, respecting the diversity of conventions for modeling and data collection.
Today’s (neuro)scientific computing landscape depends more than ever on selecting, combining, and implementing a range of tools and technologies for each specific use case. For decades, neuroscience users have turned to MATLAB as an integration environment for pioneering and innovative small-scale studies. This lesson consists of a brief talk outlining how MATLAB integrates with today's powerful tools and technologies.
Hierarchical Event Descriptors (HED) fill a major gap in the neuroinformatics standards toolkit, namely the specification of the nature(s) of events and time-limited conditions recorded as having occurred during time series recordings (EEG, MEG, iEEG, fMRI, etc.). Here, the HED Working Group presents an online INCF workshop on the need for, structure of, tools for, and use of HED annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis.
This workshop will introduce reproducible workflows and a range of tools along the themes of organisation, documentation, analysis, and dissemination.
In this talk, challenges of handling complex neuroscientific data are discussed, as well as tools and services for the annotation, organization, storage, and sharing of these data.
This lecture describes the neuroscience data respository G-Node Infrastructure (GIN), which provides platform independent data access and enables easy data publishing.
This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.
This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.
This lesson is part 1 of 2 of a tutorial on statistical models for neural data.
What is the difference between attention and consciousness? This lecture describes the scientific meaning of consciousness, journeys on the search for neural correlates of visual consciousness, and explores the possibility of consciousness in other beings and even non-biological structures.
The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.
EyeWire is a game to map the brain. Players are challenged to map branches of a neuron from one side of a cube to the other in a 3D puzzle. Players scroll through the cube and reconstruct neurons with the help of an artificial intelligence algorithm developed at Seung Lab in Princeton University. EyeWire gameplay advances neuroscience by helping researchers discover how neurons connect to process visual information.
This module explains how neurons come together to create the networks that give rise to our thoughts. The totality of our neurons and their connection is called our connectome. Learn how this connectome changes as we learn, and computes information.
This lecture provides an introduction to the study of eye-tracking in humans.