Skip to main content

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

This lecture covers the linking neuronal activity to behavior using AI-based online detection. 

Difficulty level: Beginner
Duration: 30:39

Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools. Rather than rigid distinctions, in the data science of neuroinformatics, these activities and approaches intersect and interact in dynamic ways. Together with a panel of cutting-edge neuro-data-scientist speakers, we will explore these dynamics

 

This lecture covers self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.

Difficulty level: Beginner
Duration: 25:50
Speaker: : Eva Dyer

As a part of NeuroHackademy 2020, Elizabeth DuPre gives a lecture on "Nilearn", a python package that provides flexible statistical and machine-learning tools for brain volumes by leveraging the scikit-learn Python toolbox for multivariate statistics.  This includes predictive modelling, classification, decoding, and connectivity analysis.

 

This video is courtesy of the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 01:49:18
Speaker: : Elizabeth DuPre

Estefany Suárez provides a conceptual overview of the rudiments of machine learning, including its bases in traditional statistics and the types of questions it might be applied to.

 

The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:22:18
Speaker: :

Jake Vogel gives a hands-on, Jupyter-notebook-based tutorial to apply machine learning in Python to brain-imaging data.

 

The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 02:13:53
Speaker: :

Gael Varoquaux presents some advanced machine learning algorithms for neuroimaging, while addressing some real-world considerations related to data size and type.

 

The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:17:14
Speaker: :

This lesson from freeCodeCamp introduces Scikit-learn, the most widely used machine learning Python library.

Difficulty level: Beginner
Duration: 02:09:22
Speaker: :

Dr. Guangyu Robert Yang describes how Recurrent Neural Networks (RNNs) trained with machine learning techniques on cognitive tasks have become a widely accepted tool for neuroscientists. In comparison to traditional computational models in neuroscience, RNNs can offer substantial advantages at explaining complex behavior and neural activity patterns. Their use allows rapid generation of mechanistic hypotheses for cognitive computations. RNNs further provide a natural way to flexibly combine bottom-up biological knowledge with top-down computational goals into network models. However, early works of this approach are faced with fundamental challenges. In this talk, Dr. Guangyu Robert Yang discusses some of these challenges, and several recent steps that we took to partly address them and to build next-generation RNN models for cognitive neuroscience.​

Difficulty level: Beginner
Duration: 00:51:12
Speaker: :

This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network. 

Difficulty level: Beginner
Duration: 1:32:17
Speaker: : Shih-Chii Liu

Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.

Difficulty level: Beginner
Duration: 21:15
Speaker: : Tadashi Yamazaki

Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.

Difficulty level: Beginner
Duration: 41:57
Speaker: : Giacomo Indiveri

Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.

Difficulty level: Beginner
Duration: 20:39
Speaker: : Giacomo Indiveri

This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research. 

Difficulty level: Beginner
Duration: 57:52
Speaker: : Satrajit Ghosh

An agent for reproducible neuroimaging

Difficulty level: Beginner
Duration: 1:00:10
Speaker: : David Kennedy

The Human Connectome Project aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve never before realized conclusions about the living human brain.

Difficulty level: Advanced
Duration: 59:06
Speaker: : Jennifer Elam

As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers the structured validation process within computational neuroscience, including the tools, services, and methods involved in simulation and analysis.

Difficulty level: Beginner
Duration: 14:19
Speaker: : Michael Denker

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.

Difficulty level: Beginner
Duration: 8:11
Speaker: : Thomas Wachtler
Course:

This session provides users with an introduction to tools and resources that facilitate the implementation of FAIR in their research.

 

 

Difficulty level: Beginner
Duration: 38:36