FAIR principles and methods currently in development for assessing FAIRness.
Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.
GeneWeaver is a web application for the integrated cross-species analysis of functional genomics data to find convergent evidence from heterogeneous sources. The application consists of a large database of gene sets curated from multiple public data resources and curated submissions, along with a suite of analysis tools designed to allow flexible, customized workflows through web-based interactive analysis or scripted API driven analysis. Gene sets come from multiple widely studied species and include ontology annotations, brain gene expression atlases, systems genetic study results, gene regulatory information, pathway databases, drug interaction databases and many other sources. Users can retrieve, store, analyze and share gene sets through a graded access system. Analysis tools are based on combinatorics and statistical methods for comparing, contrasting, and classifying gene sets based on their members.
GeneWeaver is a web application for the integrated cross-species analysis of functional genomics data to find convergent evidence from heterogeneous sources. The application consists of a large database of gene sets curated from multiple public data resources and curated submissions, along with a suite of analysis tools designed to allow flexible, customized workflows through web-based interactive analysis or scripted API driven analysis. Gene sets come from multiple widely studied species and include ontology annotations, brain gene expression atlases, systems genetic study results, gene regulatory information, pathway databases, drug interaction databases and many other sources. Users can retrieve, store, analyze and share gene sets through a graded access system. Analysis tools are based on combinatorics and statistical methods for comparing, contrasting and classifying gene sets based on their members.
Longitudinal Online Research and Imaging System (LORIS) is a web-based data and project management software for neuroimaging research studies. It is an open source framework for storing and processing behavioural, clinical, neuroimaging and genetic data. LORIS also makes it easy to manage large datasets acquired over time in a longitudinal study, or at different locations in a large multi-site study.
This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research.
An agent for reproducible neuroimaging
The Human Connectome Project aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve never before realized conclusions about the living human brain.
The Identifiers.org system is a central infrastructure for findable, accessible, interoperable and re-usable (FAIR) data. It provides a range of services to generate, resolve and validate persistent Compact Identifiers to promote the citability of individual data providers and integration with e-infrastructures.
As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.
As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers the structured validation process within computational neuroscience, including the tools, services, and methods involved in simulation and analysis.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.
This session provides users with an introduction to tools and resources that facilitate the implementation of FAIR in their research.
This session will include presentations of infrastructure that embrace the FAIR principles developed by members of the INCF Community.
This lecture provides an overview of The Virtual Brain Simulation Platform.