This lesson provides an overview of how to conceptualize, design, implement, and maintain neuroscientific pipelines in via the cloud-based computational reproducibility platform Code Ocean.
This lesson provides an overview of how to construct computational pipelines for neurophysiological data using DataJoint.
This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines.
This lesson provides an introduction to the DataLad, a free and open source distributed data management system that keeps track of your data, creates structure, ensures reproducibility, supports collaboration, and integrates with widely used data infrastructure.
This lesson introduces several open science tools like Docker and Apptainer which can be used to develop portable and reproducible software environments.
This lecture provides a detailed description of how to incorporate HED annotation into your neuroimaging data pipeline.
This talk provides an overview of the FAIR-aligned efforts of MATLAB and MathWorks, from the technological building blocks to the open science coordination involved in facilitating greater transparency and efficiency in neuroscience and neuroinformatics.
In this lesson, you will learn how to understand data management plans and why data sharing is important.
This lecture covers a wide range of aspects regarding neuroinformatics and data governance, describing both their historical developments and current trajectories. Particular tools, platforms, and standards to make your research more FAIR are also discussed.
This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research.
This talk covers the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC), a free one-stop-shop collaboratory for science researchers that need resources such as neuroimaging analysis software, publicly available data sets, or computing power.
This talk covers the Human Connectome Project, which aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data, and the opportunity to achieve never before realized conclusions about the living human brain.
This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.
This lecture focuses on the structured validation process within computational neuroscience, including the tools, services, and methods involved in simulation and analysis.
This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.
This session provides users with an introduction to tools and resources that facilitate the implementation of FAIR in their research.
This session will include presentations of infrastructure that embrace the FAIR principles developed by members of the INCF Community.
This lecture provides an overview of The Virtual Brain Simulation Platform.
This lesson consists of a demonstration of the BRIAN Simulator. BRIAN is a free, open-source simulator for spiking neural networks. It is written in the Python programming language and is available on almost all platforms, and is designed to be easy to learn and use, highly flexible, and easily extensible.
This lesson provides a demonstration of NeuroFedora, a volunteer-driven initiative to provide a ready-to-use Fedora-based free and open-source software platform for neuroscience. By making the tools used in the scientific process easier to use, NeuroFedora aims to aid reproducibility, data sharing, and collaboration in the research community.The CompNeuro Fedora Lab was specially to enable computational neuroscience.
This lesson provides an introduction and live demonstration of neurolib, a computational framework for simulating coupled neural mass models written in Python. Neurolib provides a simulation and optimization framework which allows you to easily implement your own neural mass model, simulate fMRI BOLD activity, analyse the results and fit your model to empirical data.