This tutorial covers how to handle writing very large data in PyNWB.
This lesson provides a tutorial on how to handle writing very large data in MatNWB.
This video explains what metadata is, why it is important, and how you can organize your metadata to increase the FAIRness of your data on EBRAINS.
This lecture provides reviews some standards for project management and organization, including motivation from the view of the FAIR principles and improved reproducibility.
This lesson gives an introduction to the Mathematics chapter of Datalabcc's Foundations in Data Science series.
This lesson serves a primer on elementary algebra.
This lesson provides a primer on linear algebra, aiming to demonstrate how such operations are fundamental to many data science.
In this lesson, users will learn about linear equation systems, as well as follow along some practical use cases.
This talk gives a primer on calculus, emphasizing its role in data science.
This lesson clarifies how calculus relates to optimization in a data science context.
This lesson covers Big O notation, a mathematical notation that describes the limiting behavior of a function as it tends towards a certain value or infinity, proving useful for data scientists who want to evaluate their algorithms' efficiency.
This lesson serves as a primer on the fundamental concepts underlying probability.
Serving as good refresher, this lesson explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.
This compilation is courtesy of freeCodeCamp.
This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.
This lesson was created by RootMath.
This lecture covers the description and characterization of an input-output relationship in a information-theoretic context.
This lesson is part 1 of 2 of a tutorial on statistical models for neural data.
This lesson is part 2 of 2 of a tutorial on statistical models for neural data.
From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.
From Universal Turing Machines to McCulloch-Pitts and Hopfield associative memory networks, this lecture explains what is meant by computation.
In this lesson you will learn about ion channels and the movement of ions across the cell membrane, one of the key mechanisms underlying neuronal communication.