This talk introduces Bayes' theorem, which describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
This lesson recaps why math, in a number of ways, is extremely useful in data science.
This lesson provides an introduction to the lessons in this course that deal with statistics and why they are useful for data science.
In this lesson, users will learn about the importance of exploratory analysis, as well as how statistics enables one to become familiar with and understand one's data.
This lesson goes over graphical data exploration, including motivations for its use as well as practical examples of visualizing data distributions.
In this lesson, users learn about exploratory statistics, and are introduced to various methods for numerical data exploration.
This lesson overview some simple descriptions of statistical data.
This lesson covers the basics of hypothesis testing.
This lesson describes the Neuroscience Gateway , which facilitates access and use of National Science Foundation High Performance Computing resources by neuroscientists.
This lesson gives an introduction to high-performance computing with the Compute Canada network, first providing an overview of use cases for HPC and then a hands-on tutorial. Though some examples might seem specific to the Calcul Québec, all computing clusters in the Compute Canada network share the same software modules and environments.
This lesson provides a short overview of the main features of the Canadian Open Neuroscience Platform (CONP) Portal, a web interface that facilitates open science for the neuroscience community by simplifying global access to and sharing of datasets and tools. The Portal internalizes the typical cycle of a research project, beginning with data acquisition, followed by data processing with published tools, and ultimately the publication of results with a link to the original dataset.
This talk presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance computing facilities across Canada and around the world.
Maximize Your Research With Cloud Workspaces is a talk aimed at researchers who are looking for innovative ways to set up and execute their life science data analyses in a collaborative, extensible, open-source cloud environment. This panel discussion is brought to you by MetaCell and scientists from leading universities who share their experiences of advanced analysis and collaborative learning through the Cloud.
This lecture discusses how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.
In this talk, you will learn how brainlife.io works, and how it can be applied to neuroscience data.
As a part of NeuroHackademy 2020, this lecture delves into cloud computing, focusing on Amazon Web Services.
This lesson provides an introduction the International Neuroinformatics Coordinating Facility (INCF), its mission towards FAIR neuroscience, and future directions.
This talk describes the NIH-funded SPARC Data Structure, and how this project navigates ontology development while keeping in mind the FAIR science principles.
This lesson consists of a brief discussion around this sessions previous talks.
This lecture gives an introduction to the INCF Short Course: Introduction to Neuroinformatics.