This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.
In this lesson, you will learn about hardware for computing for non-ICT specialists.
This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain.
This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.
This brief talk goes into work being done at The Alan Turing Institute to solve real-world challenges and democratize computer vision methods to support interdisciplinary and international researchers.
This lecture provides a history of data management, recent developments data management, and a brief description of scientific data management.
Computer arithmetic is necessarily performed using approximations to the real numbers they are intended to represent, and consequently it is possible for the discrepancies between the actual solution and the approximate solutions to diverge, i.e. to become increasingly different. This lecture focuses on how this happens and techniques for reducing the effects of these phenomena and discuss systems which are chaotic.
This lecture will addresses what it means for a problem to have a computable solution, methods for combining computability results to analyse more complicated problems, and finally look in detail at one particular problem which has no computable solution: the halting problem.
This lecture focuses on computational complexity, a concept which lies at the heart of computer science thinking. In short, it is a way to quickly gauge an approximation to the computational resource required to perform a task.
This lecture gives an introduction to simulation, models, and the neural simulation tool NEST.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
In this lesson, you will learn about how genetics can contribute to our understanding of psychiatric phenotypes.
This lecture gives an introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lesson discuses forms of neural plasticity on many levels, including short-term, long-term, metaplasticity, and structural plasticity. During the lesson you will also be presented with examples related to the modelling of biochemical networks.
This lesson provides an introduction to modelling of chemical computation in the brain.
This lesson gives a presentation on computationally demanding studies of synaptic plasticity on the molecular level.
This lesson is part 1 of 2 of a tutorial on statistical models for neural data.
This lesson is part 2 of 2 of a tutorial on statistical models for neural data.
This lecture covers an Introduction to neuron anatomy and signaling, as well as different types of models, including the Hodgkin-Huxley model.