Skip to main content

In this final lesson of the course, you will learn broadly about EEG signal processing, as well as specific applications which make this kind of brain signal valuable to researchers and clinicians. 

Difficulty level: Beginner
Duration: 34:51

This lesson introduces the EEGLAB toolbox, as well as motivations for its use.

Difficulty level: Beginner
Duration: 15:32
Speaker: : Arnaud Delorme

In this lesson, you will learn about the biological activity which generates and is measured by the EEG signal.

Difficulty level: Beginner
Duration: 6:53
Speaker: : Arnaud Delorme

This lesson goes over the characteristics of EEG signals when analyzed in source space (as opposed to sensor space). 

Difficulty level: Beginner
Duration: 10:56
Speaker: : Arnaud Delorme

This lesson describes the development of EEGLAB as well as to what extent it is used by the research community.

Difficulty level: Beginner
Duration: 6:06
Speaker: : Arnaud Delorme

This lesson provides instruction as to how to build a processing pipeline in EEGLAB for a single participant. 

Difficulty level: Beginner
Duration: 9:20
Speaker: :

Whereas the previous lesson of this course outlined how to build a processing pipeline for a single participant, this lesson discusses analysis pipelines for multiple participants simultaneously. 

Difficulty level: Beginner
Duration: 10:55
Speaker: : Arnaud Delorme

In addition to outlining the motivations behind preprocessing EEG data in general, this lesson covers the first step in preprocessing data with EEGLAB, importing raw data. 

Difficulty level: Beginner
Duration: 8:30
Speaker: : Arnaud Delorme

Continuing along the EEGLAB preprocessing pipeline, this tutorial walks users through how to import data events as well as EEG channel locations.

Difficulty level: Beginner
Duration: 11:53
Speaker: : Arnaud Delorme

This tutorial demonstrates how to re-reference and resample raw data in EEGLAB, why such steps are important or useful in the preprocessing pipeline, and how choices made at this step may affect subsequent analyses.

Difficulty level: Beginner
Duration: 11:48
Speaker: : Arnaud Delorme

In this tutorial, users learn about the various filtering options in EEGLAB, how to inspect channel properties for noisy signals, as well as how to filter out specific components of EEG data (e.g., electrical line noise).

Difficulty level: Beginner
Duration: 10:46
Speaker: : Arnaud Delorme

This tutorial instructs users how to visually inspect partially pre-processed neuroimaging data in EEGLAB, specifically how to use the data browser to investigate specific channels, epochs, or events for removable artifacts, biological (e.g., eye blinks, muscle movements, heartbeat) or otherwise (e.g., corrupt channel, line noise). 

Difficulty level: Beginner
Duration: 5:08
Speaker: : Arnaud Delorme

This tutorial provides instruction on how to use EEGLAB to further preprocess EEG datasets by identifying and discarding bad channels which, if left unaddressed, can corrupt and confound subsequent analysis steps. 

Difficulty level: Beginner
Duration: 13:01
Speaker: : Arnaud Delorme

Users following this tutorial will learn how to identify and discard bad EEG data segments using the MATLAB toolbox EEGLAB. 

Difficulty level: Beginner
Duration: 11:25
Speaker: : Arnaud Delorme

This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.

Difficulty level: Beginner
Duration: 18:56
Speaker: : Tom Johnstone

To explore the challenges and the ethical issues raised by advances in do-it-yourself (DIY) neurotechnology, the Emerging Issues Task Force of the International Neuroethics Society organized a virtual panel discussion. The panel discussed neurotechnologies such as transcranial direct current stimulation (tDCS) and electroencephalogram (EEG) headsets and their ability to change the way we understand and alter our brains. Particular attention will be given to the use of neurotechnology by everyday people and the implications this has for regulatory oversight and citizen neuroscience. 

Difficulty level: Beginner
Duration: 1:00:59

This module covers many of the types of non-invasive neurotech and neuroimaging devices including electroencephalography (EEG), electromyography (EMG), electroneurography (ENG), magnetoencephalography (MEG), and more. 

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

Hierarchical Event Descriptors (HED) fill a major gap in the neuroinformatics standards toolkit, namely the specification of the nature(s) of events and time-limited conditions recorded as having occurred during time series recordings (EEG, MEG, iEEG, fMRI, etc.). Here, the HED Working Group presents an online INCF workshop on the need for, structure of, tools for, and use of HED annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. 

     

    Difficulty level: Beginner
    Duration: 03:37:42
    Speaker: :

    This talk gives a brief overview of current efforts to collect and share the Brain Reference Architecture (BRA) data involved in the construction of a whole-brain architecture that assigns functions to major brain organs. 

    Difficulty level: Beginner
    Duration: 4:02