Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Neuronify is an educational tool meant to create intuition for how neurons and neural networks behave. You can use it to combine neurons with different connections, just like the ones we have in our brain, and explore how changes on single cells lead to behavioral changes in important networks. Neuronify is based on an integrate-and-fire model of neurons. This is one of the simplest models of neurons that exist. It focuses on the spike timing of a neuron and ignores the details of the action potential dynamics. These neurons are modeled as simple RC circuits. When the membrane potential is above a certain threshold, a spike is generated and the voltage is reset to its resting potential. This spike then signals other neurons through its synapses.
Neuronify aims to provide a low entry point to simulation-based neuroscience.
This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
This lecture gives an introduction to simulation, models, and the neural simulation tool NEST.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
Forms of plasticity on many levels - short-term, long-term, metaplasticity, structural plasticity. With examples related to modelling of biochemical networks.
[NB: The sound uptake is a bit noisy the first few minutes, but gets better from about 5 mins in]
Introduction to modelling of chemical computation in the brain
Conference presentation on computationally demanding studies of synaptic plasticity on the molecular level
Part 1 of 2 of a tutorial on statistical models for neural data
Part 2 of 2 of a tutorial on statistical models for neural data.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
Forms of plasticity on many levels - short-term, long-term, metaplasticity, structural plasticity. With examples related to modelling of biochemical networks.
[NB: The sound uptake is a bit noisy the first few minutes, but gets better from about 5 mins in]
Introduction to modelling of chemical computation in the brain
Conference presentation on computationally demanding studies of synaptic plasticity on the molecular level
Introduction to the role of models in theoretical neuroscience
Different types of models, model complexity, and how to choose an appropriate model.