Skip to main content

This tutorial walks participants through the application of dynamic causal modelling (DCM) to fMRI data using MATLAB. Participants are also shown various forms of DCM, how to generate and specify different models, and how to fit them to simulated neural and BOLD data.

 

This lesson corresponds to slides 158-187 of the PDF below. 

Difficulty level: Advanced
Duration: 1:22:10

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system. 

Difficulty level: Intermediate
Duration: 4:10
Speaker: : Dan Goodman

This demonstration walks through how to import your data into MATLAB.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses. 

Difficulty level: Beginner
Duration: 15:10
Speaker: : MATLAB®

This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.

Difficulty level: Beginner
Duration: 2:49
Speaker: : MATLAB®

This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.

Difficulty level: Beginner
Duration: 6:27
Speaker: : MATLAB®

This brief tutorial goes over how you can easily work with big data as you would with any size of data.

Difficulty level: Beginner
Duration: 3:55
Speaker: : MATLAB®

In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.

Difficulty level: Beginner
Duration: 3:52
Speaker: : MATLAB®

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate
Duration: 10:01
Course:

This lesson gives a quick walkthrough the Tidyverse, an "opinionated" collection of R packages designed for data science, including the use of readr, dplyr, tidyr, and ggplot2.

Difficulty level: Beginner
Duration: 1:01:39
Speaker: : Thomas Mock

This lesson provides a hands-on tutorial for generating simulated brain data within the EBRAINS ecosystem. 

Difficulty level: Beginner
Duration: 32:58
Speaker: : Jil Meier

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks. 

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

In this lesson, you will learn about the Python project Nipype, an open-source, community-developed initiative under the umbrella of NiPy. Nipype provides a uniform interface to existing neuroimaging software and facilitates interaction between these packages within a single workflow.

Difficulty level: Intermediate
Duration: 1:25:05
Speaker: : Satrajit Ghosh