Skip to main content

Difficulty level

Lecture title:

This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.

Difficulty level: Beginner
Duration: 39:05
Speaker: : Nir Giladi
Lecture title:

2nd part of the lecture. This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.

Difficulty level: Beginner
Duration: 45:27
Speaker: : Nir Giladi
Lecture title:

This lecture will provide an overview of neuroimaging techniques and their clinical applications

Difficulty level: Beginner
Duration: 41:00
Speaker: : Dafna Ben Bashat
Lecture title:

A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.

Difficulty level: Beginner
Duration: 51:49
Lecture title:

The lecture focuses on rationale for employing neuroimaging methods for movement disorders

Difficulty level: Beginner
Duration: 1:04:04
Speaker: : Bogdan Draganski
Lecture title:

The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.

Difficulty level: Beginner
Duration: 1:13:16
Speaker: : Clay Reid
Lecture title:

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid
Lecture title:

From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.

Difficulty level: Beginner
Duration: 56:31
Speaker: : Clay Reid
Lecture title:

From Universal Turing Machines to McCulloch-Pitts and Hopfield associative memory networks, this lecture explains what is meant by computation.

Difficulty level: Beginner
Duration: 55:27
Speaker: : Christof Koch
Lecture title:

In an overview of the structure of the mammalian neocortex, this lecture explains how the mammalian cortex is organized in a hierarchy, describing the columnar principle and canonical microcircuits

Difficulty level: Beginner
Duration: 1:02:02
Speaker: : Clay Reid
Lecture title:

The retina has 60 different types of neurons. What are their functions? This lecture explores the definition of cell types and their functions in the mammalian retina.

Difficulty level: Beginner
Duration: 1:07:19
Speaker: : Christof Koch
Lecture title:

Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.

Difficulty level: Beginner
Duration: 26:17
Speaker: : Clay Reid
Lecture title:

Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.

Difficulty level: Beginner
Duration: 1:07:03
Speaker: : Clay Reid
Lecture title:

This lecture explains these ideas and explores the task of characterizing neuronal response properties using information theory.

Difficulty level: Beginner
Duration: 1:01:18
Speaker: : Christof Koch
Lecture title:

What is color? This lecture explores how color is "made" in the brain and variations of color perception including trichromacy, color blindness in men, tetrachromatic vision in women, and genetic engineering of color perception.

Difficulty level: Beginner
Duration: 1:11:07
Speaker: : Christof Koch
Lecture title:

What is the difference between attention and consciousness? This lecture describes the scientific meaning of consciousness, journeys on the search for neural correlates of visual consciousness, and explores the possibility of consciousness in other beings and even non-biological structures.

Difficulty level: Beginner
Duration: 1:10:01
Speaker: : Christof Koch
Lecture title:

This primer on optogenetics primer discusses how to manipulate neuronal populations with light at millisecond resolution and offers possible applications such as curing the blind and "playing the piano" with cortical neurons.

Difficulty level: Beginner
Duration: 59:06
Speaker: : Clay Reid
Lecture title:

Neuroethics has been described as containing at least two components - the neuroscience of ethics and the ethics of neuroscience. The first involves neuroscientific theories, research, and neuro-imaging focused on how the brain arrives at moral decisions and actions, which challenge existing descriptive theories of how humans develop moral thinking and make ethical decisions. The second, ethics of neuroscience, involves applying normative theories about what is right, good and fair to ethical questions raised by neuroscientific research and new technologies, such as how to balance the public benefit of “big data” neuroscience while protecting individual privacy and norms of informed consent.

Difficulty level: Beginner
Duration: 38:49
Lecture title:

The HBP as an ICT flagship project crucially relies on ICT and will contribute important input into the development of new computing principles and artefacts. Individuals working on the HBP should therefore be aware of the long history of ethical issues discussed in computing. The discourse on ethics and computing can be traced back to Norbert Wiener and the very beginning of digital computing. From the 1970s and 80s it has developed into an active discussion involving academics from various disciplines, professional bodies and industry.

Difficulty level: Beginner
Duration: 46:12
Speaker: : Bernd Stahl
Lecture title:

Like any transformative technology, intelligent robotics has the potential for huge benefit, but is not without ethical or societal risk. In this lecture, I will explore two questions. Firstly, the increasingly urgent question of the ethical use of robots: are there particular applications of robots that should be proscribed, in eldercare, or surveillance, or war fighting for example? When intelligent autonomous robots make mistakes, as they inevitably will, who should be held to account? Secondly, I will consider the longer-term question of whether intelligent robots themselves could or should be ethical. Seventy years ago Isaac Asimov created his fictional Three Laws of Robotics. Is there now a realistic prospect that we could build a robot that is Three Laws Safe?

Difficulty level: Beginner
Duration: 31:35
Speaker: : Alan Winfield