This lecture covers an introduction to neuroinformatics and its subfields, the content of the short course and future neuroinformatics applications.
The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.
An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.
How genetics can contribute to our understanding of psychiatric phenotypes.
Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lecture describes non-spiking simple neuron models used in artificial neural networks and machine learning.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lecture describes non-spiking simple neuron models used in artificial neural networks and machine learning.
Introductory presentation on how data science can help with scientific reproducibility.